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Solution of voter model dynamics on annealed small-world networks
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An analytical study of the behavior of the voter model on the small-world topology is performed. In order
to solve the equations for the dynamics, we consider an annealed version of the Watts-Strogatz~WS! network,
where long-range connections are randomly chosen at each time step. The resulting dynamics is as rich as on
the original WS network. A temporal scalet separates a quasistationary disordered state with coexisting
domains from a fully ordered frozen configuration.t is proportional to the number of nodes in the network, so
that the system remains asymptotically disordered in the thermodynamic limit.
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I. INTRODUCTION

The relationship between nontrivial interaction topolog
and ordering phenomena is still a largely unexplored top
The recent burst of activity on complex networks has
vealed that many technological, social, and biological s
tems have interaction patterns markedly different from str
tures traditionally studied as regular lattices and rand
graphs@1,2#. The interest is now focusing on how such com
plex topologies affect dynamical processes taking place
them. Models of ordering dynamics play an important role
this context, since they are commonly used to study so
phenomena, such as cultural assimilation and opinion
namics @3–6#, for which the interaction patterns are mo
plausibly described by complex networks than by regu
lattices.

Some ordering processes on complex networks have
cently been considered, including the zero-tempera
Glauber dynamics of the Ising model on the Watts-Strog
network @7# and the Axelrod model on small-world an
scale-free networks@8#.

In a recent paper@9#, we have studied numerically th
dynamics of the voter model on a small-world network. Th
structure, more precisely the Watts-Strogatz~WS! network
@10#, is one of the simplest examples of complex topolo
Depending on the parameterp ~to be specified below! it in-
terpolates between a one-dimensional lattice with perio
boundary conditions~for p50) and a random graph~for p
51). It has been shown@10# that in a well-defined range o
intermediate values ofp, the network has, simultaneousl
global properties typical of random graphs~small average
distance between nodes! and local properties~clustering!
typical of regular structures.

The voter model is possibly the simplest model of
ordering process@11#. On each site a discrete variables is
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defined, which may assume two values~s561! representing
two opposite options, for instance, the electoral choice
favor of two different candidates. Starting from a disorder
initial condition, the model follows a simple dynamical ev
lution: at each time step one site is selected at random
set equal to one of its nearest neighbors, chosen at rando
its turn. On regular lattices, ind51 and d52, the model
converges to an ordered state with all variables having
same value, whereas ford>3 the system reaches a diso
dered stationary state@12,13#. The voter model on complete
graphs has been considered recently@14,15#.

In Ref. @9# we have found that the nontrivial connectivit
pattern of the WS network has a deep impact on the orde
dynamics of the voter model. In particular, after an init
transient, the system settles in a quasistationary state
coexisting domains. If the system size is infinite, this st
persists forever: at odds with naive expectations, long-ra
connections prevent complete ordering from being reach
If the system size is kept finite instead, the stationary s
has a finite lifetime and the fully ordered state is quick
reached at the end of it. Interestingly, the dependence of
lifetime on the system size is such that the ordered stat
reached earlier than on a one-dimensional lattice of the s
size. This partially restores the intuitive picture that lon
range connections should speed up the ordering process

In this work we analyze the same problem from the a
lytical point of view. The very simple form of the transitio
rates for the voter model results in equations of motion
the correlation functions that are not coupled with each oth
The only difficulty is to carry out the average over traject
ries for a fixed realization of the network and to average o
the topology afterward. To overcome this problem we use
annealed approximation, consisting in averaging over the
pology before averaging over the trajectories. This appro
mation is exact for an effective network, which we call a
nealed WS network, where long-range interactions are
quenched from the beginning but are extracted randoml
each time step. The dynamics of the voter model on
annealed WS network is then solved, revealing a phen
©2004 The American Physical Society09-1
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enology as rich as in the quenched case. By comparing
exact results on the annealed WS network with the numer
simulations on the quenched one, it turns out that the o
discrepancy between the two cases is the dependence o
parameterp of the correlation length in the stationary diso
dered state.

The paper is organized as follows. In the following se
tion we define precisely the voter model dynamics and
WS topology on which the process occurs. Section III
devoted to the analytical solution of the dynamics. The eq
tion of motion for the correlation function is derived, th
annealed approximation is introduced, and the behavio
the system is studied. In Sec. IV we check numerically
analytical results for the annealed case and compare t
with simulations of the quenched case. In Sec. V we ext
the results to the case where each site is initially conne
to 2n neighbors. The final section contains a short discuss
of the findings.

II. THE MODEL

We consider a small-world network defined as the sup
position of a one-dimensional lattice ofL sites with periodic
boundary conditions and a random graph@16#. In general,
one can start from a lattice with each site linked ton neigh-
bors on the right andn on the left. We now considern51,
deferring the discussion of generic values ofn to Sec. V.
More precisely, sitei is initially connected with sitesi 21
and i 11. Then a link is added between any pair of no
nearest neighbor sites with probabilityp/L. In this way the
total number of edges in the system isL1@L(L
23)/2#p/L, so that the average degree per site is finite
1p) in the thermodynamic limitL→`. The generalization
to an initial lattice with connections tok nearest neighbors i
straightforward. This topology slightly differs from the on
originally introduced by Watts and Strogatz@10# but has the
same properties and is more amenable to analytical tr
ment. The topology is fully specified by the adjacency mat
Q( i , j ), which is 1 if i and j are connected and 0 otherwis
The probability distribution of its elements is

P@Q~ i , j !#55
dQ( i , j ),0 for i 5 j

dQ( i , j ),1 for i 5 j 61

p

L
dQ( i , j ),11S 12

p

L D dQ( i , j ),0 otherwise.

~1!

The voter model dynamics is defined by the transition ra
If we call $s% the spin configuration of the system, that
$s%5$s1 ,s2 , . . . ,s i , . . . ,sL% and we indicate with$s8% i
the same configuration with thei th spin flipped, the transi-
tion rate from state$s% to state$s8% i is, in complete analogy
with the definition for regular lattices,

w~$s%→$s8% i !5
1

2 S 12
s i

zi
(

k
Q~ i ,k!skD , ~2!
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wherezi , the degree of sitei, is

zj5(
i

Q~ i , j !.

III. ANALYTICAL TREATMENT

A. Equation for the correlation function

Given the explicit expression~2! of the transition rates,
from the master equation

d

dt
P~$s%,t !5(

i
w~$s8% i→$s%!P~$s8% i ,t !2(

i
w~$s%

→$s8% i !P~$s%,t !, ~3!

one can derive@17,18# the equation of motion for the mea
spin at sitej, sj[^s j&,

dsj

dt
52sj1(

k

Q~ j ,k!sk

zj
, ~4!

and for the two-point correlation functionCj ,k[^s jsk&,

dCj ,k

dt
522Cj ,k1(

i

Q~ j ,i !Ck,i

zj
1(

i

Q~k,i !Cj ,i

zk
. ~5!

For p50, Eqs.~4! and ~5! coincide with the equations fo
the one-dimensional voter model@13#.

In order to study the dynamics of the voter model on t
Watts-Strogatz network, we must average Eqs.~4! and ~5!
over the disordered topology. Indicating with an overbar
averaged quantitiesĀ5*) i , jdQ( i , j )AP@Q( i , j )#, the equa-
tion for the mean spin is

ds̄j

dt
52 s̄j1(

k
S Q~ j ,k!sk

zj
D , ~6!

and the one for the pair correlation function is

dC̄j ,k

dt
522C̄j ,k1(

i
S Q~ j ,i !Ck,i

zj
D1(

i
S Q~k,i !Cj ,i

zk
D .

~7!

To evaluate the average values appearing on the right-h
side of Eqs.~6! and ~7! we introduce the annealed approx
mation

S Q~ j ,k!

zj
DA5S Q~ j ,k!

zj
D Ā. ~8!

This approximation can be seen as considering anne
transition rates

w̄~$s%→$s8% i !5
1

2 F12(
k

S Q~ i ,k!

zi
Ds iskG . ~9!

The evaluation of(Q( j ,k)/zj ) is readily performed:
9-2
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S Q~ j ,k!

zj
D5E )

l ,m
dQ~ l ,m!P@Q~ l ,m!#

Q~ j ,k!

(
i

Q~ j ,i !

5E dQ~ j ,k!P@Q~ j ,k!#Q~ j ,k!

3E )
l ,mÞ j ,k

dQ~ l ,m!P@Q~ l ,m!#
1

(
i

Q~ j ,i !

.

~10!

Inserting Eq.~1! in Eq. ~10!, one easily finds fork5 j ,

S Q~ j , j !

zj
D50, ~11!

for k5 j 61,

S Q~ j , j 61!

zj
D5E dQ~ j ,k!P@Q~ j ,k!#Q~ j ,k!

3 (
n50

L23 S L23

n D ~p/L !n~12p/L !L232n

11Q~ j ,k!1n

5 f 2~p/L,L23!, ~12!

and, similarly, forkÞ j , j 61,

S Q~ j ,k!

zj
D5

p

L
f 3~p/L,L24!, ~13!

where

f R~a,N!5 (
n50

N S N

n Dan~12a!N2n

R1n
. ~14!

Explicit formulas for the functionsf 2 and f 3 are given in the
Appendix. In the limit of largeL they tend to the simple
forms

F2~p!5 lim
L→`

f 2~p/L,L23!5
1

p
2

~12e2p!

p2

and

F3~p!5 lim
L→`

f 3~p/L,L24!5
1

p
2

2

p2 1
2~12e2p!

p3
,

which go to 1/2 and 1/3, respectively, in the limitp→0.
The dynamical rule corresponding exactly to rates~9! is

easily found. At each time step one site~site i ) of a one-
dimensional lattice is randomly selected. Then, with pro
ability f 2(p/L,L23) one of the two nearest neighborsi
11 or i 21) is chosen ands i is set equal to it. With prob-
ability (p/L) f 3(p/L,L24) instead, one randomly choose
one of the otherL23 sites and setss i equal to it. In this
way, the effective topology over which the dynamics tak
01610
-

s

place changes at each time step. We call such network ‘
nealed’’ WS network. The average properties are those of
original ‘‘quenched’’ WS network, but no permanent conne
tion exists between non nearest neighbor sites.

We can now write down the explicit form of the equatio
of motion for the mean spin and the correlation function
the annealed Watts-Strogatz network as

ṡj52sj1 f 2~p/L,L23!~sj 111sj 21!

1
p

L
f 3~p/L,L24! (

lÞ j , j 61
sl , ~15!

Ċj ,k522Cj ,k1 f 2~p/L,L23!~Cj 11,k1Cj 21,k1Cj ,k11

1Cj ,k21!1
p

L
f 3~p/L,L24!

3S (
lÞ j , j 61

Ck,l1 (
lÞk,k61

Cj ,l D . ~16!

For simplicity, here and in the following, the overbar is om
ted. Also the arguments off 2 and f 3 will often be omitted.

Equation~16! is complemented by the boundary conditio
Cj , j51 and by the initial conditionCj ,k(t50). We consider
an initial fully uncorrelated stateCj ,k(t50)5d j ,k . Hence
the correlation function depends only onr 5u j 2ku for all
times, and the equation of motion is

Ċ~r !522S 11
p f3

L DC~r !12S f 22
p f3

L D
3@C~r 11!1C~r 21!#12

p f3

L (
l 50

L21

C~ l !, ~17!

where the relation 2f 2(p/L,L23)1(L23)p/L f 3(p/L,L
24)2150, proved in the Appendix@Eq. ~A4!#, has been
used.

If we sum Eq.~15! over j and divide byL, we obtain the
temporal evolution of average total magnetizationM
5(1/L)( j sj :

dM

dt
5@2112 f 2~p/L,L23!

1~L23!p/L f 3~p/L,L24!#M . ~18!

Since the coefficient on the right-hand side vanishes@Eq.
~A4!# the average total magnetization is conserved, as in
dynamics on regular lattices.

B. The stationary state

We now turn to the analysis of Eq.~17! and consider first
the continuum limit in real space, yielding
9-3
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Ċ522~122 f 2!S 11
3

L23DC12S f 22
122 f 2

L23 DC9

12
122 f 2

L23 E
0

L

drC~r !. ~19!

Let us look for final configurations of the system, i.e., so
tions of the stationary equation

C92lL
2C1FL50, ~20!

where

lL
25

~122 f 2!@113/~L23!#

@ f 22~122 f 2!/~L23!#
.0 ~21!

and

FL5
lL

2

L E
0

L

dlC~ l !. ~22!

For finite L, taking into account thatC(r 50)51 and
uC(r )u<1;r , one obtains

C~r !5
FL

lL
2

1F12
FL

lL
2 Gexp~2lLr !. ~23!

Imposing the consistency of Eq.~23! with Eq. ~22!, the final
correlation function turns out to be

C~r !51 ;r>0. ~24!

The final configuration of the system is a frozen fully o
dered state.

On the other hand, in the thermodynamic limitL→`,
(1/L)*0

LdrC(r )5C(`) so that the solution is

C~r !5C~`!1@12C~`!#exp@2l~p!r #, ~25!

with l2(p)5 limL→`lL
2 . From Eq.~19! one obtainsĊ(`)

50, and sinceC(`)50 for t50 we have

C~r !5exp@2l~p!r #. ~26!

Hence the stationary configuration of the system is dis
dered, with a correlation lengthjp ,

jp5
1

l~p!
5

1

A1/F2~p!22
5

1

Ap2/~p211e2p!22
,

~27!

where the explicit form ofF2(p)5 limL→` f 2(p/L,L23) is
computed in the Appendix. In the limit of smallp the corre-
lation length diverges asp21/2.

C. Preasymptotic dynamics

We now study the equation of motion~17! in Fourier
space by closely following the treatment for the Ising mo
01610
-

r-

l

on a one-dimensional lattice@19#. In this way, not only the
stationary state but also the preasymptotic dynamics can
analyzed. Introducing

C~r ,t !5
1

L (
k8

ck8~ t !eik8r , ~28!

with k852pn/L, n52L/2, . . . ,L/2, multiplying both sides
of Eq. ~17! by e2 ikr , and summing overr from 1 to L21,
we obtain

1

L (
k8

ċk8~ t ! (
r 51

L21

ei (k82k)r

522A
1

L (
k8

ck8~ t ! (
r 51

L21

ei (k82k)r12B
1

L (
k8

ck8~ t !

3~eik81e2 ik8! (
r 51

L21

ei (k82k)r12
p

L
f 3C0(

r 51

L21

e2 ikr .

Using ( r 51
L21ei (k2k8)5Ldk,k821, we get

ċk~ t !52gkck~ t !1A~ t !12
p f3

L
c0~ t !~Ldk,021!, ~29!

where

gk52F11
p f3

L
22S f 22

p f3

L D cos~k!G ~30!

and

A~ t !5
1

L (
k

ck~ t !gk . ~31!

The disordered initial condition impliesck(t50)51 for all
k. The boundary conditionC(r 50,t)51 implies

15
1

L (
k

ck~ t ! ~32!

for all t. Equation~29! can be solved by Laplace transfor
methods. Introducing

ĉk~s!5E
0

`

ck~ t !e2stdt. ~33!

Equation~29! becomes

sĉk~s!2152gkĉk~s!1â~s!12p f3ĉ0~s!~dk,021/L !,
~34!

where â(s)5L21(kgkĉk(s) is the Laplace transform o
A(t). The coefficientsĉk(s) can be formally written down as

ĉk~s!5H â~s!11

s1g0 /L
, k50

â~s!112g0ĉ0~s!/L

s1gk
, kÞ0.

~35!
9-4
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Note thatg052p f3. To determineâ(s) we transform the
boundary condition~32!, use the expressions~35!, and re-
place the discrete sum overk with an integral~which is cor-
rect in the limit of largeL we are interested in!, obtaining

1

s
5

â~s!11

Ls1g0
1S 12

g0

Ls1g0
D @ â~s!11#E

2p

p dk

2p

1

s1gk
.

~36!

For large L we can take gk(L)→gk(L5`)52@12(1
2g0/2)cos(k)#. The integral is easily carried out yieldin
„s214s14@12(12g0/2)2#…21/2. We are interested int
@1/p⇒s!g0 so that we obtain

1

s
5@ â~s!11#F 1

Ls1g0
1

1

2Ag0
S 12

g0

Ls1g0
D G . ~37!

From Eq.~37!, one realizes the existence of a temporal sc
t5L/Ag0 separating two different regimes.

For t!t, â(s)1152Ag0/s so that c0(t)52Ag0t and
ck(t)52Ag0/gk . The correlation function is

C~r ,t !52Ag0

t

L
12Ag0E

2p

p dk

2p

eikr

2@12~12g0/2!cos~k!#
.

~38!

The first term is negligible becauset!t. HenceC(r ) does
not depend on time and decays exponentially withr. This is
a quasistationary state with coexisting domains of fixed s
Such a regime lasts for a timet which diverges forL→`, so
that in the thermodynamic limit the system remains asym
totically in this disordered state.

For t@t instead, all ĉk(s) vanish exceptĉ0(s)5L/s.
HenceC(r )51 and the system becomes completely order
This is the asymptotic regime for a system of finite size.

Let us summarize the results obtained in this section.
have solved the dynamics of the voter model on an anne
small-world topology: in this way we have found that fini
systems remain in a disordered state for a time proportio
to their size, and then converge to the totally ordered c
figuration; infinite systems instead reach a disordered fi
stationary state, with a correlation function that decays ex
nentially over a distancejp . For small values ofp the cor-
relation lengthjp diverges asp21/2.

IV. NUMERICAL RESULTS

In order to validate the analytical results presented abo
we have performed numerical simulations of the voter mo
both on the annealed and on the quenched Watts-Stro
topology.

Figure 1 reports, for the annealed case, the temporal
havior of the fractionnA of active bonds, i.e., the fraction o
nearest neighbor sites with opposite values ofs, for p50.1
and several values ofL. After an initial decrease, typical o
one-dimensional systems, a plateau sets in. The analy
treatment predicts such a preasymptotic regime to last fo
interval proportional toL. The inset of Fig. 1 confirms the
analytical finding.
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In the limit L→`, the disordered state corresponding
the plateau becomes the asymptotic one. The analytical
lution predicts an exponential form of the correlation fun
tion @Eq. ~26!# with the correlation lengthjp given by Eq.
~27!. This analytical form is a very good approximation fo
the correlation function also for very large, but finite, valu
of L in the quasistationary regime (t,t). This is shown
numerically in the main part of Fig. 2. In the inset of th
same figure we report the values ofjp obtained numerically,
which perfectly coincide with Eq.~27!.

We have introduced the annealed version of the Wa

FIG. 1. Main: Plot of the fraction of active bondsnA for p
50.1 and system sizesL 400, 600, 800, 1000, 1400, 2000~from left
to right! for the annealed case. Data are averaged over 1000 di
ent realizations. Inset: The durationt of the plateau in the main par
of the figure~symbols! plotted vsL. t is evaluated as the time a
which nA drops below 0.01. The straight line is a power-law regr
sion with best-fit exponent equal to 0.9860.03.

FIG. 2. Main: Correlation functionC(r ) in the quasistationary
state for a system of sizeL5105 and p50.025 ~symbols!, com-
pared with the analytical prediction, Eq.~26! ~solid line!. Only one
realization of the noise is considered. The agreement is excel
Inset: The correlation lengthjp obtained numerically from the de
cay of the correlation functionC(r ) in the quasistationary state o
annealed WS networks withL5105 ~circles!, compared with the
analytical prediction, Eq.~27! ~solid line!, and the same quantity
computed for the quenched WS network~squares!.
9-5
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Strogatz network as an approximation for the WS netw
with quenched topology. Hence it is interesting to comp
the results of the two cases to understand how well the
proximation captures the behavior of the original system
Ref. @9# we have already performed a numerical investig
tion of the voter dynamics on the quenched WS topology.
comparing the results reported in Ref.@9# and the theoretica
approach presented here, we see that the annealed app
mation correctly reproduces many of the important featu
of the original system, i.e., the existence of a regime wit
disordered state before full order sets in and the linear
pendence onL of the temporal scalet between them. Con
cerning the shape of the final correlation function in the c
of infinite quenched networks, Fig. 3 shows thatC(r ) is
exponential, another feature that is the same in the anne
and the quenched cases. What the annealed approximat
not able to capture is the quantitative dependence of the
relation length onp. This is shown in the inset of Fig. 2
where it is clear that, for smallp, jp;p21 in the quenched
system@9#, while jp;p21/2 in the annealed case.

V. EXTENSION TO nÌ1

In the previous sections we have considered an in
one-dimensional lattice with each site connected only
its nearest neighbors. When the number of neighbors c
nected to each site isn.1, one can quite easily extend th
analytical calculations presented above. On physical grou
one expects the qualitative picture to remain the same. A
formulas are very similar. In general they involve, in t
place of f 2 and f 3, the functionsf 2n(p/L,L2122n) and
f 2n11(p/L,L2222n). The equation for the average tot
magnetization becomes

dM

dt
5@2112n f 2n~p/L,L2122n!1~L21

22n!p/L f 2n11~p/L,L2222n!#M , ~39!

FIG. 3. Correlation functionC(r ) in the quasistationary state fo
a quenched WS network of sizeL5105, p50.025 ~circles!, and
p50.2 ~squares!. Only one realization is considered. The solid lin
are exponential fits.
01610
k
e
p-
n
-
y

oxi-
s
a
e-

e

led
n is
r-

l
o
n-

ds
o

andM is again conserved due to the vanishing of the coe
cient on the right-hand side@Eq. ~A4!#. The equation for the
correlation functionC(r ) becomes

Ċ~r !522S 11
p f2n11

L DC~r !12S f 2n2
p f2n11

L D
3(

i 51

n

@C~r 1 i !1C~r 2 i !#12
p f2n11

L (
l 50

L21

C~ l !.

~40!

Considering the continuum limit of Eq.~40! and looking for
the stationary state one obtains

C92lL
2C1FL50, ~41!

where now

lL
25

~122n f 2n!@11~2n11!/~L22n21!#

@ f 2n2~122n f 2n!/~L22n21!#vn
.0 ~42!

and

vn5(
j 51

n

j 25
n~n11!~2n11!

6
. ~43!

Again the only solution for finiteL is the completely ordered
state C(r )51, while in the thermodynamic limitC(r )
5exp@2l(p)r#. The correlation length is

jp51/l~p!5
1

A1/F2n~p!22n
, ~44!

whereF2n(p)5 limL→` f 2n(p/L,L22n21). In the limit of
small p, by expanding Eq.~A2!, one finds

jp;~2np!21/2. ~45!

For what concerns the preasymptotic dynamics, the only
mal change in Eq.~29! is that f 3 is replaced byf 2n11, but
now the form ofgk is different,

gk52F11
p f2n11

L
22S f 2n2

p f2n11

L D (
j 51

n

cos~ jk !G .

~46!

By applying the Laplace transform one gets an equation
mally equal to Eq.~36!. For genericn we cannot perform
explicitly the integral appearing in Eq.~36! and hence we
cannot write down the analog of Eq.~37!. However, we can
guess that the only change will be the replacement of
factor 1/2Ag0 with some other factor independent ofL.
Therefore the existence of two regimes separated by a t
poral scalet proportional toL will be preserved. Moreover
on physical grounds, we expect the proportionality factor
scale asp21/2 also for genericn. To confirm this, we have
performed numerical simulations of a system with ne
nearest neighbor connections~n52!. The results, presente
in Fig. 4, confirm the expectation. The temporal scalet sepa-
9-6
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rating the quasistationary disordered state from the tot
ordered configuration scales asLp21/2. We can conclude tha
the behavior of the voter model on the small-world topolo
is qualitatively the same, regardless of the numbern of con-
nections between neighbors.

VI. CONCLUSIONS

In this paper we have studied analytically the voter mo
on the small-world topology. We have considered an
nealed version of the Watts-Strogatz network, where lo
range connections are not fixed, but chosen randomly at e
time step. In this way each realization of the voter mo
dynamics takes place in an effective average small-wo
topology, and this allows the exact solution of the equat
for the correlation function of the system.

The dynamical behavior of the model on the annea
topology is very similar to the behavior on the quenched W
network. Systems of finite size converge asymptotically t
totally ordered frozen state after an intermediate quasi
tionary stage, characterized by a finite correlation length.
duration of this preasymptotic regime is proportional to t
number of sites. Hence systems of infinite size never re
the ordered state and remain in a disordered stationary
with finite domain size. All these features are exactly t
same both on the annealed and on the quenched versio
the network. A quantitative difference arises only in the d
pendence of the correlation lengthjp on the probabilityp of
having a long-range connection. This discrepancy is not
prising, since a similar disagreement between the anne
and the quenched case has been noted previously for d
sion on Watts-Strogatz networks@20# and the voter model is
well known to be related with first passage properties
random walkers@18#. In that case, the crossover time sep
rating short and long time behavior of the mean number
distinct sites visited scales asp22 in the quenched network

FIG. 4. Main: Plot of the fraction of active bondsnA for L
53000, andp50.05, p50.025, p50.01, andp50.008~from top
to bottom! for the annealed case. Data are averaged over 1
different realizations. Inset: The durationt of the plateau in the
main part of the figure~symbols! plotted vsp. t is evaluated as the
time at whichnA drops below one-tenth of the value during th
plateau. The straight line is a power-law regression with bes
exponent equal to 0.4760.03.
01610
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and as 1/p in the annealed one. This difference is due to t
fact that in the quenched case a walker has to diffuse ov
distance 1/p before reaching a shortcut and deviating fro
the one-dimensional behavior. This clearly requires a ti
p22. In the annealed case instead, the time needed to
form a long-range jump scales as 1/p. In the voter model on
small-world topology the boundaries between ordered
mains perform a one-dimensional random walk for sh
times. The behavior changes when the walkers make a lo
range jump. As mentioned above, this requires a time 1/p in
the annealed network andp22 in the quenched one. Thi
difference generates the different scaling of the correlat
length in the two types of topology.

Despite this discrepancy the voter model dynamics
small-world networks is relatively insensitive to th
quenched or annealed nature of the topology. An interes
question for future work is whether this insensitivity exten
also to other ordering processes on other complex netwo

APPENDIX

In this appendix we give explicit formulas for the func
tions f 2n(p/L,L22n21) and f 2n11(p/L,L22n22). Let
us consider

f R~a,N![ (
n50

N S N

n Dan~12a!N2n

R1n
. ~A1!

For aÞ0,

f R~a,N!5
1

aRE0

a

dssR21~s112a!N. ~A2!

The derivation of Eq.~A2! is easy:

f R~a,N!5
1

aR (
n50

N S N

n Dan1R~12a!N2n

R1n

1

aR

5 (
n50

N S N

n D ~12a!N2nE
0

a

dssR1n21
1

aR

5E
0

a

dssR21(
n50

N S N

n D ~12a!N2nsn
1

aR

5E
0

a

dssR21~s112a!N. ~A3!

Using Eq.~A1! it is easy to verify that

R fR~a,N2R!1a~N2R! f R11~a,N2R21!51.
~A4!

The vanishing of the coefficient on the right-hand side
Eqs.~18! and~39! is obtained by settingR52n, a5p/L and
N5L21.

Using Eq. ~A2! the explicit formulas forf 2 and f 3 are
readily found to be

0

t

9-7
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f 2~p/L,L23!5S L

pD 2F 1

L21
2

~12p/L !

L22
1

~12p/L !L21

~L22!~L21!G ,
~A5!

f 3~p/L,L24!5S L

pD 3F 1

L21
2

2~12p/L !

L22
1

~12p/L !2

L23

2
2~12p/L !L21

~L23!~L22!~L21!G . ~A6!

Finally the asymptotic forms of the functions forL→` are
tt

s.

tt

01610
F2~p!5 lim
L→`

f 2~p/L,L23!5
1

p
2

~12e2p!

p2
~A7!

and

F3~p!5 lim
L→`

f 3~p/L,L24!5
1

p
2

2

p2 1
2~12e2p!

p3
,

~A8!

which go to 1/2 and 1/3, respectively, in the limitp→0.
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